The *tert*-Butanesulfinyl Group: An Ideal Chiral Directing Group and Boc-Surrogate for the Asymmetric Synthesis and Applications of β -Amino Acids

Tony P. Tang and Jonathan A. Ellman*

Department of Chemistry, University of California, Berkeley, Berkeley, California 94720

Received October 16, 1998

 β -Amino acids are components of numerous natural products and therapeutic agents.¹ Recently, oligomers of β -amino acids have received considerable attention due to their unique structural properties.² Although a number of methods are available for the synthesis of β -substituted amino acids, highly substituted derivatives are not readily accessible.¹

We have recently reported a practical, catalytic enantioselective synthesis of the versatile chiral ammonia synthon *tert*-butanesulfinamide **1** in two steps and 71–75% overall yield from *tert*-butyl disulfide.³ Sulfinamide **1** condenses readily with aldehydes and ketones to give *tert*-butanesulfinyl imines **2** in high yields.⁴ Additions of Grignard reagents or organolithiums to **2** proceed cleanly with high diastereoselectivities. Acidic methanolysis then provides the desired α -branched amine-hydrochloride products.⁵

Here, we report that *tert*-butanesulfinyl imines can also serve as chiral building blocks for the asymmetric synthesis of β -amino acids via enolate additions to **2**. This method is extremely general, providing access not only to β -substituted β -amino acids but also to β , β - and α , β -disubstituted β -amino acids.^{5,6} The latter two classes of β -amino acids cannot readily be prepared using standard Arndt–Eistert α -amino acid homologations, Michael addition of amines to acrylate derivatives, or hydrogenation of 3-amino acrylates.¹ Furthermore, we demonstrate that the *tert*-butanesulfinyl moiety serves not only as an imine activating and chiral directing group but also as a versatile amine protecting group for subsequent synthetic transformations.

Am. Chem. B36, 120, 431-432. (b) Ishnani, 11, Ceno, M., Kobayashi,
S. Ibid. 1997, 119, 7153-7154.
(2) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173-180. (b) Seebach,
D.; Matthews, J. L. Chem. Commun. 1997, 2015-2022. (c) Clark, T. D.;
Buehler, L. K.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 651-656.

(3) Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A. *J. Am. Chem. Soc.* **1998**, *120*, 8011–8019.

Table 1.	Solvent and	Metal Ion	Effects on	
Diastereofaci	al Selectivity	of Enolate	Additions	to 2
	$(\mathbf{R}^1 = \mathbf{P}\mathbf{\check{h}})$	$\mathbf{R}^2 = \mathbf{H}$		

metal enolate (base)	solvent	yield ^a (%)	$\mathbf{d}\mathbf{r}^b$
Li (LDA)	THF	76	83:17
Li (LDA)	Et ₂ O	91	67:33
Na (NaHMDS)	THF	89	75:25
Na (NaHMDS)	Et ₂ O	78	96:4
1 equiv of ClTi(O- <i>i</i> -Pr) ₃ (LDA)	THF	90	87:13
2 equiv of ClTi(O- <i>i</i> -Pr) ₃ (LDA)	THF	90	98:2
4 equiv of ClTi(O- <i>i</i> -Pr) ₃ (LDA)	THF	90	99:1

^{*a*} Isolated yields of analytically pure material. ^{*b*} Diastereoselectivity was determined by HPLC analysis of the corresponding MTPA derivatives, prepared after sulfinyl cleavage of unpurified product.

To effect the synthesis of β -amino acids, we first explored the effect of different metal enolate species and solvents on yield and diastereofacial selectivity of the enolate addition to the *tert*-butanesulfinyl aldimine derived from benzaldehyde. Additions of lithium, sodium, and titanium enolates of methyl acetate to **2** (R¹ = Ph, R² = H) were carried out in THF or Et₂O (Table 1).

The stereoselectivity observed for the lithium and titanium enolate addition is consistent with a proposed Zimmerman–Traxler-type six-membered transition state **TS-1** favoring approach of the enolate from the *si*-face of **2** ($\mathbb{R}^1 =$ Ph, $\mathbb{R}^2 = H$) as shown in Scheme 1.⁷ The titanium enolate is prepared by transmetalation of the corresponding lithium enolate with ClTi(O-*i*-Pr)₃ and is proposed to be in equilibrium with the lithium enolate and a lithium–titanium–ate enolate complex.⁸ The effect of ClTi(O-*i*-Pr)₃ stoichiometry on diastereoselectivity was therefore evaluated. An appreciable improvement in diastereoselectivity was observed upon increasing the ClTi(O-*i*-Pr)₃ stoichiometry from 1 to 2 equiv, but no significant improvement in stereoselectivity was observed at higher stoichiometries.

Reaction generality was then evaluated by performing titanium (2 equiv) enolate additions to aryl, branched alkyl, and unbranched alkyl *tert*-butanesulfinyl aldimines. All of the substrates showed high diastereoselectivities and high yields. Even enolate additions to sulfinyl ketimines (entries **3f** and **3g**, Table 2) proceeded in high yields and stereoselectivities.⁹

We have also preliminarily evaluated the diastereoselective synthesis of α,β -disubstituted β -amino esters by reaction of the titanium enolate of methyl propionate with **2** (R¹ = CH₃, R² = H) to give 92% of the major diastereomer **4**

⁽¹⁾ For a review of β -amino acid syntheses see: Cole, D. C. *Tetrahedron* **1994**, *50*, 9517–9582. For leading references on catalytic asymmetric syntheses of β -amino acids see: (a) Kobayashi, S.; Ishitani, H.; Ueno, M. *J. Am. Chem. Soc.* **1998**, *120*, 431–432. (b) Ishitani, H.; Ueno, M.; Kobayashi, S. *Ibid.* **1997**, *119*, 7153–7154.

⁽⁴⁾ Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J.

⁽a) Lid, G., Cogan, D. R., Owels, T. D., Tang, T. T., Enhan, J. R. S. Org. Chem., submitted.
(5) For a review of p-toluenesulfinyl imine chemistry, see: Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. Rev. 1998, 27, 13–18.
(6) Acetate enolate additions to p-toluenesulfinyl aldimines have been additions to p-toluenesulfinyl aldimines have been additional additions for p-toluenesulfinyl additions have been additional additions for p-toluenesulfinyl additions have been additional additions for p-toluenesulfinyl additional additionadditional additionadditional additional additional addit

⁽⁶⁾ Acetate enolate additions to p-toluenesulfinyl aldimines have been explored by others: Davis, F. A.; Reddy, R. E.; Szewczyk, J. M. J. Org. Chem. 1995, 60, 7037-7039; Fujusawa, T.; Kooriyama, Y.; Shimizu, M. Tetrahedron Lett. 1996, 37, 3881-3884.

⁽⁷⁾ Davis, F. A.; Reddy, R. T.; Reddy, R. E. J. Org. Chem. **1992**, *57*, 6387–6389.

⁽⁸⁾ Siegel, C.; Thornton, E. R. *J. Am. Chem. Soc.* **1989**, *111*, 5722–5728.
(9) Only the *E* isomer of sulfinyl ketimines prepared from isopropyl methyl ketone and acetophenone are observed by ¹H NMR.

 Table 2. Effect of Sulfinyl Imine Substitution on Yield and Diastereoselectivity

cmpd	\mathbb{R}^1	\mathbb{R}^2	yield ^a (%)	$\mathbf{d}\mathbf{r}^{b}$
3a	Me	Н	94	99:1
3b	<i>i</i> -Pr	Н	85	98:2
3c	<i>i</i> -Bu	Н	80	98:2
3d	Ph	Н	90	98:2
3e	3-pyridine	Н	70	95:5 ^c
3f	<i>i</i> -Pr	Me	85	99:1
3g	Ph	Me	89	98:2

^{*a*} Isolated yields of analytically pure material. ^{*b*} Diastereoselectivity was determined by HPLC analysis of the MTPA derivatives, prepared after sulfinyl cleavage of unpurified product. ^{*c*} Diastereoselectivity was determined by ¹H NMR.

(Scheme 2). Cleavage of the *tert*-butanesulfinyl group followed by acylation with benzoyl chloride provides the benzamide product. Correlation of the spectral properties to literature values for optical rotation and ¹H and ¹³C NMR spectra¹⁰ confirmed that the reaction proceeded with *syn* selectivity, consistent with a Zimmerman–Traxler transition state.

The *tert*-butanesulfinyl group not only is an ideal auxiliary for the synthesis of β -amino esters but also can serve as a versatile, low molecular weight protecting group that can be readily removed by treatment with stoichiometric HCl. To demonstrate the suitability of the *tert*-butanesulfinyl group as a Boc-surrogate, we have prepared compound **8**, which constitutes a formal synthesis of **9**, investigated by Monsanto Co. (St. Louis) as a GPIIbIIIa antagonist and which incorporates β -(3-pyridine)- β -amino acid.¹¹ This β -amino acid is also a key pharmacophore in a number of other reported GPIIbIIIa antagonists.¹²

Hydrolysis of **3e** cleanly provided acid **5**, demonstrating the stability of the *tert*-butanesulfinyl group toward basic

 a Reaction conditions: (a) LiOH, MeOH, H₂O; (b) β -Ala-OEt·HCl, DCC, HOBt, CH₂Cl₂; (c) HCl, EtOH, then 4-cyanophenylisocyanate, *i*-Pr₂NEt, DMF; (d) HCl, EtOH, then NH₄OH, NH₄Cl.

reaction conditions (Scheme 3). After filtration through silica gel, the acid was coupled to β -Ala-OEt using standard peptide coupling conditions in 85% yield for the two-step process. The *tert*-butanesulfinyl group was then cleaved by brief treatment with HCl/EtOH at room temperature, followed by reaction with 4-cyanophenylisocyanate to afford 7 in 92% overall yield. Conversion of the nitrile to an amidine was accomplished by treatment with HCl/EtOH and then NH₄OH/NH₄Cl to afford the literature compound **8** in 65% yield, which can be converted to **9** by straightforward saponification.¹¹

In conclusion, we have demonstrated the utility of *tert*butanesulfinyl imines for the asymmetric synthesis of β -substituted and β , β - and α , β -disubstituted β -amino acids in high yields and diastereoselectivities. We have further demonstrated the utility of the *tert*-butanesulfinyl group as a versatile amine protecting group that is stable to basic conditions and amide bond formations but can be cleaved with stoichiometric acid treatment. The applicablity of *N*-*tert*-butanesulfinyl- β -amino acids to the rapid solid-phase synthesis of β -amino acid oligomers will be reported in due course.

Acknowledgment. This work was supported by the National Science Foundation, Berlex, and Abbott Laboratories.

Supporting Information Available: Experimental procedures and spectroscopic data for compounds **2e** and **3–8** (10 pages). JO9820824

 ⁽¹⁰⁾ Juaristi, E.; Escalante, J. J. Org. Chem. 1993, 58, 2282–2285.
 (11) Tjoeng, F. S.; Toth, M. V.; McMackins, D. E.; Adams, S. P. U.S. Patent Number 5,314,902.

⁽¹²⁾ For leading references, see: Hutchinson, J. H.; Cook, J. J.; Brashear, K. M.; Breslin, M. J.; Glass, J. D.; Gould, R. J.; Halczenko, W.; Holahan, M. A.; Lynch, R. J.; Sitko, G. R.; Stranieri, M. T.; Hartman, G. D. J. Med. Chem. 1996, 39, 4583–4591.